預約諮詢

reVIVE Oncology and Cancer Centre strives to provide the best, efficient and comprehensive treatment to patients. Our professional medical team is formed by experienced specialists.

Integrating Chinese and Western treatment with advanced medical facilities, reVIVE Oncology and Cancer Center always give you the full support to your health.

Personalized Treatment Plan

Cancer and Gene

Given the high variety of tumor cells, and the different physical conditions of patients, now we can quickly decode the tumor DNA and identify cancer-related mutations by the application of cancer genomic testing, e.g. Next Generation Sequencing (NGS). Comprehensive genomic profiling allows specialists to identify the optimal treatment for each patient.

What is cancer?

Cancer begins when genes in a cell become abnormal and the cell starts to grow and divide out of control.

How does genomic testing find the best treatment for the patient?

Genomic testing can identify the mutations that drive the patient's tumor growth. Since patients of the same cancer type often carry different mutations, genomic testing allows doctors to select the optimal treatments based on the individual's genomic profile. On the other hand, patients with different cancer types may harbor the same genetic mutations, so genomic profiling can sometimes identify more treatment options across cancer types. For example, a drug approved for breast cancer may benefit a lung cancer patient carrying a genetic alteration more commonly seen in breast cancer.

Multi-Disciplinary Team

Our Multi-Disciplinary Team (MDT) is formed by experienced specialists that aim to provide the most comprehensive and personalized treatment for every patient. Personalized Treatment Plan also includes combined therapies that are specially designed based in the patient’s condition and individual needs.

Multi-Disciplinary Cancer Therapy simplifies the entire treatment process by gathering different experienced specialists to discuss patient cancer diagnoses from a diverse set of perspectives and provide a comprehensive treatment plan for patients. This is a relatively time-saving approach for patients as they might not have to waste time on referrals.

Chemotherapy

Chemotherapy

Chemotherapy uses one or multiple kinds of cancer drugs, that are commonly administered into vein (intravenous, IV) or orally, to enter the bloodstream throughout the body to kill cancer cells or prevent their growth. For uncontrollable cancers, chemotherapy can alleviate the pain of patient. By combining surgery and radiotherapy, the risk of recurrence is reduced.

Targeted Therapy

Targeted therapy drugs, like any drugs used to treat cancer, are technically considered chemotherapy. The most common ways to give targeted therapy drugs are by mouth (as a tablet or capsule) or into a vein (intravenously). But targeted therapy drugs do not work in the same ways as standard chemotherapy drugs. Targeted therapy drugs interfere with specific molecules (targets) that are involved in cancer cell growth and survival. Traditional chemotherapy drugs, by contrast, act against all actively dividing cells. Therefore, targeted therapy drugs may have fewer side effects than traditional chemotherapy drugs.
However, the use of a targeted therapy may be restricted to patients whose tumor has an appropriate target for a particular target therapy drug. Sometimes, a patient is a candidate for a targeted therapy only if he or she meets specific criteria (for example, their cancer did not respond to other therapies, has spread, or is inoperable).

Common types of targeted therapy drugs

Signal transduction inhibitors
In some cancers, the malignant cells are stimulated to divide continuously without being prompted to do so by external growth factors. Signal transduction inhibitors interfere with this inappropriate signaling.
Angiogenesis is the formation of new blood vessels. Blood supply is necessary for tumors to grow beyond a certain size because blood provides the oxygen and nutrients that tumors need for continued growth. Angiogenesis inhibitors block the growth of new blood vessels to tumors and thus may block tumor growth.
Apoptosis-inducing drugs cause cancer cells to undergo a process of controlled cell death called apoptosis.
Once the antibody binds to its target cell, the toxic molecule that is linked to the antibody — such as a radioactive substance or a poisonous chemical — will be taken up by the cell and ultimately kills that cell. The toxin will not affect cells that lack the target for the majority of cells in the body will not be affected.

Radiotherapy

Radiation therapy or radiotherapy is therapy using ionizing radiation, generally as part of cancer treatment to cure cancer. These high-energy radiations destroy fast-growing cancer cells by damaging the DNA within these cells. Although normal cells will also be damaged during the process, they possess better self-repairing capability while these damages are way beyond the capabilities of the cancer cells' repair systems.

Volumetric Modulated Arc Therapy (VMAT)

VMAT is volumetric-arc radiotherapy which delivers a sculpted 3D-dose distribution precisely with a 360-degree rotation of the linear accelerator gantry. With tomosynthesis guidiance and as the gantry rotates, the planned algorithm is able to modulate the speed of the gantry rotation, the shape of the multi-leaf collimator and the dose rate of the beam continuously. This allows for the delivery of high dose radiation to the target while reducing dose to surrounding organs. Literature has shown that arc therapy is effective for a multitude of cancers, including cranial, head and neck, prostate and cervical tumors.
Oncologists can use complete or partial arcs to reduce treatment delivery times up to 50-80% comparing to conventional radiotherapy. For unstable patients (for example patients with irregular breathing pattern), VMAT also allows for increased patient throughput which shortens waiting lists.

Active Breathing Coordinator™ (ABC)

As breathings cause movement of tumors, the patient needs to hold his/her breathe during simulation and external beam radiotherapy to increase the operation accuracy. The ABC is therefore used not only to minimize the anatomical movement in the chest and abdomen due to breathing and cardiac motion but also minimizes the radiation dose to the critical organs or normal tissue surrounding the tumor.
In order to achieve an efficient active breathing radiation therapy, the medical specialists will tailor-make a mold for fixation of each patient and connect the mold to the ABC device. The breath-hold periods, therapy type and dose can be calculated and monitored through a computer system after the therapy plan is further verified by the doctor.

Adaptive Radiotherapy

During a course of radiotherapy, patients may lose appetite and result in weight loss. The contour and shape of the patient may change. Adaptive Radiotherapy and verification scans are used to scan the inter-fractional contour change and monitor tumor evolution. It is used to quantitatively measure the tumor response during radiotherapy.

Tomotherapy

Tomotherapy is an advanced type of radiation therapy delivery system that combines positioning, image-guided and intensity-modulated radiation therapy (IMRT), resulting in greater precision and accuracy in radiation treatment. By using this technology, radiation therapists are able to create optimal plans, locate the location and monitor the change in shape of the tumor for each individual patient. The radiation dose is directed to the tumor while minimizing exposure to healthy tissue.

Precise

In general, if the cancer cells disperse and spread to a large area, radiotherapy is not recommended for its strong side effects. Radiation is produced by a device called the linear accelerator (linac). The linac is mounted to a CT scanner-like ring gantry in the Tomotherapy treatment machine. This unique ring gantry design enables the system to deliver radiation in a helical (continuous 360°) delivery pattern up to 51 angles ((Helical Intensity Modulated Radiation Therapy, IMRT). It also uses a patented multi-leaf collimator (MLC) that divides the radiation beam into many smaller, narrow "beamlets". With three-dimensional view of a patient's anatomy and the Adaptive Image Guided Radiotherapy (IGRT), more angles and more beam modulation result in a more precise dose distribution.
For patients with wide tumors dispersion where radiotherapy for large area is needed, Tomotherapy is able to cover up to 160 cm and the therapy duration is therefore greatly reduced.

Accurate

The exact location of a tumor can vary everyday depending on factors such as internal organ movement between treatments and the patient's relative positioning at the time of each treatment. This system allows us to take a CT scan just prior to each treatment in order to obtain a three-dimensional view of a patient's anatomy for that day.
Integrating these images with the CT images taken beforehand, the time consumed will increase 1 to 4 times comparing to conventional therapy. However, medical specialists can adjust the patient's position to make sure radiation is directed right where it should be. The daily pre-treatment CT scan can also be used for dose guidance, allowing therapist to visualize the dose that will actually be delivered to the patient while reducing the risk of side effects.

Stereotactic Radiosurger (SRS)

SRS is a type of therapy that requires precise and accurate positioning. It reduces the damage to the surrounding tissues by using special equipment to position the patient that precisely gives a single large dose of radiation to a tumor. SRS is mainly used to treat brain and neck tumors.
SRS requires shorter duration comparing to conventional low dose therapy and therefore is the optimal therapy plan for elderly or patient with severe conditions. Before the SRS, doctor usually uses TomoTherapy to obtain the internal images of the patient in order to accurately locate the tumor. TomoTherapy is also considered an efficient therapy as it can simultaneously locate various tumors. Last but not least, the special equipments used in Radionics can assist to accurately position the tumor, thus lowering the risk of other normal tissues.

Intensity Modulated Radiation Therapy,IMRT

IMRT

Intensity Modulated Radiation Therapy (IMRT) is an advanced radiation treatment technique that allows us to deliver radiation to a tumour with more precision, resulting in potentially fewer side effects and higher cure rates. IMRT utilizes thousands of tiny radiation beams entering into the body from different angles to intersect on the tumor. The therapy will adjust the dose according to the shape of the tumor and locations of other surround tissues.

Image-Guided Techology

Image-guided radiation therapy assists in improving the precision and accuracy of daily radiation treatments. The location of the tumor can vary from day to day depending on factors such as internal organ movements between treatments and variations in patient’s relative position at the time of treatment. Orthogonal X-ray images and CT scans will be taken prior to each treatment and then compared to the CT images. By integrating these images, we are able to adjust the patient’s position accordingly to ensure that the radiation is administered as planned.

3DCRT

Three-dimensional (3D) conformal radiotherapy uses 3D images on a computer to shape beams of radiation around the shape and size of the tumor. The radiation beams are highly focused (conformed) on the tumor and this precise nature allows high doses of radiation to be given, while reducing the amount of radiation damage to the surrounding healthy tissue. However, 3DCRT is still under improvement. Anatomical structures, such as the nasopharynx, have a special "C shape" which wraps around the spinal cord. Minimal dose to the spinal cord and other surrounding organs such as the parotid glands cannot be achieved using 3DCRT. IMRT is an advanced type of 3DCRT that uses even more sophisticated software (advanced computer planning programs) and hardware (dynamic multi-leaf collimators) to control the shape and intensity of radiation delivered to the desired parts of the treatment area.

How does IMRT work?

Using CT images, the oncologist and radiation therapists visualize the tumor and the surrounding region in three dimensions. The oncologist designates specific doses of radiation that the tumor and surrounding normal tissues should receive. With the help of an advanced computer program, the radiation therapist develops an optimal plan to meet the specified requirements. This process is called "inverse treatment planning". The resulting radiation dose distribution is consistent with the shape of the tumor by modulating the intensity of the radiation beam. The ultimate goal of this inverse treatment planning is to maximize tumor dose while simultaneously protecting the surrounding normal tissue.
In addition to the sophisticated computer program, IMRT also involves the use of dynamic multi-leaf collimators located in the radiation treatment machine. They are computer-controlled devices made up of individual "leaves" that can move independently in and out of the radiation beam. They vary radiation beam intensity across the treatment area. With IMRT, the patient is treated with numerous small beams from various angles with different intensity. The resulting radiation beams are conformed to the shape of the tumor according to the optimal plan established by the oncologist and radiation therapist, resulting into a better tumor targeting, lessened side effects and improved treatment outcomes.

Superficial Radiation Therapy

Superficial radiation therapy is an effective treatment for skin cancer including basal cell carcinoma, squamous cell carcinoma and Kaposi's sarcoma.
It is treatment using a low energy radiation beam (x-ray) within the range of 50-150 kV (kilovolts). The beam energy penetrates only the top layer of the skin. Therefore, the treatment avoids deeper tissues, thus reducing scars. The treatment is also used in cases where surgical excision is difficult to reconstruct or where the risk of disfiguring is high. In certain skin cancers, if the pathology report following surgery suggests a high risk of recurrence, adjuvant superficial radiation therapy can further improve the cure rate.

Prone Breast

In radiotherapy, reproducible setup and comfortable patient positioning are critical. For breast cancer patients, a new alternative to supine treatment is to plan and treat in the prone position. The patient is irradiated in the prone position while the treated breast hangs down away from the chest wall and brings about the benefit of minimizing the radiation dose to normal tissues.
The dose-volume histograms demonstrate that lung tissue irradiation is significantly lower with the patient in the prone position than that of the supine position. On top of that, large-breasted women appear to benefit most from irradiation in the prone position.
In one of the largest published studies of prone breast radiotherapy that included 245 women with early-stage breast cancer, the prone technique was well tolerated, with only a few patients (~ 4.9 %) complaining of chest wall or rib pain during treatment. None of these cases necessitated a treatment break. With the added advantage of improved dose homogeneity throughout the breast as well as decreased hot spots in the apex and base, prone breast irradiation is an effective alternative in fighting against breast cancer.

Remote High Dose Rate (HDR) Afterloading Brachytherapy

With the Flexitron Afterloading Brachytherapy delivery system, radioactive sources (Ir192) are used to deliver radiation at a short distance by interstitial, intracavitary, or intraluminal application. With this mode of therapy, a high radiation dose can be delivered locally to the tumor with rapid dose fall-off, thus minimizing dose to the surrounding normal tissues.

Suitable cases for Brachytherapy include:

  1. Cancers of the uterine cervix, uterine body and vagina
  2. Interstitial boost in breast cancer treatment
  3. Boost in nasopharyngeal carcinoma treatment after external beam radiotherapy
  4. Recurrence and re-treatment of neck disease
  5. Intraluminal boost in esophageal cancer treatment, etc.

Surgery

Surgery is used to remove primary tumors that situated in our organs. Theoretically, cancer can be cured if the tumor or the whole organ is entirely removed. However, if the cancer has metastasized to other sites in the body, chemotherapy or radiotherapy is usually arranged by doctors to minimize the chance of recurrence.

Tumor Treating Fields (TTFields)

The standard of treatment for a GBM is surgery, followed by radiation, chemotherapy or targeted therapy. has an unfavorable prognosis mainly due to its high propensity for tumor recurrence. It has been suggested that GBM recurrence is inevitable after a median survival time of 32–36 weeks. Tumor Treating Fields (TTFields) is a new treatment modality for GBM, treatment with TTFields has been proven to provide significant clinical benefit for GBM patients.

About TTFields
Tumor Treating Fields (TTFields) are low intensity alternating electric fields, which are tuned to interfere with the division process of cancer cells and disrupt essential processes and cellular structures leading to apoptotic cell death.
TTFields have been approved by the FDA for treatment of adult patients suffering from recurrent and newly diagnosed GBM. Treatment with TTFields was delivered continuously (≥18 hours/day) via four transducer arrays placed on the shaved scalp and connected to a portable battery.


The personal information that you provide will be kept confidential, and will only be used for the purpose of making an appointment.